Computation of Jacobsthal ’ S Function

نویسنده

  • THOMAS R. HAGEDORN
چکیده

Let j(n) denote the smallest positive integer m such that every sequence of m consecutive integers contains an integer prime to n. Let Pn be the product of the first n primes and define h(n) = j(Pn). Presently, h(n) is only known for n ≤ 24. In this paper, we describe an algorithm that enabled the calculation of h(n) for n < 50. 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithmic concepts for the computation of Jacobsthal's function

The Jacobsthal function has aroused interest in various contexts in the past decades. We review several algorithmic ideas for the computation of Jacobsthal’s function for primorial numbers and discuss their practicability regarding computational effort. The respective function values were computed for primes up to 251. In addition to the results including previously unknown data, we provide exh...

متن کامل

COMPUTATION OF JACOBSTHAL ’ S FUNCTION h ( n ) FOR

Let j(n) denote the smallest positive integer m such that every sequence of m consecutive integers contains an integer prime to n. Let Pn be the product of the first n primes and define h(n) = j(Pn). Presently, h(n) is only known for n ≤ 24. In this paper, we describe an algorithm that enabled the calculation of h(n) for n < 50. 0.

متن کامل

Ternary Modified Collatz Sequences And Jacobsthal Numbers

We show how to apply the Collatz function and the modified Collatz function to the ternary representation of a positive integer, and we present the ternary modified Collatz sequence starting with a multiple of 3N for an arbitrary large integer N . Each ternary string in the sequence is shown to have a repeating string, and the number of occurrences of each digit in each repeating string is iden...

متن کامل

On Jacobsthal Binary Sequences

S. Magliveras and W. Wei∗, Florida Atlantic University Let Σ = {0, 1} be the binary alphabet, and A = {0, 01, 11} the set of three strings 0, 01, 11 over Σ. Let A∗ denote the Kleene closure of A, and Z the set of positive integers. A sequence in A∗ is called a Jacobsthal binary sequence. The number of Jacobsthal binary sequences of length n ∈ Z is the n Jacobsthal number. Let k ∈ Z, 1 ≤ k ≤ n. ...

متن کامل

On Some Identities of k-Jacobsthal-Lucas Numbers

In this paper we present the sequence of the k-Jacobsthal-Lucas numbers that generalizes the Jacobsthal-Lucas sequence introduced by Horadam in 1988. For this new sequence we establish an explicit formula for the term of order n, the well-known Binet’s formula, Catalan’s and d’Ocagne’s Identities and a generating function. Mathematics Subject Classification 2010: 11B37, 11B83

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008