Computation of Jacobsthal ’ S Function
نویسنده
چکیده
Let j(n) denote the smallest positive integer m such that every sequence of m consecutive integers contains an integer prime to n. Let Pn be the product of the first n primes and define h(n) = j(Pn). Presently, h(n) is only known for n ≤ 24. In this paper, we describe an algorithm that enabled the calculation of h(n) for n < 50. 0.
منابع مشابه
Algorithmic concepts for the computation of Jacobsthal's function
The Jacobsthal function has aroused interest in various contexts in the past decades. We review several algorithmic ideas for the computation of Jacobsthal’s function for primorial numbers and discuss their practicability regarding computational effort. The respective function values were computed for primes up to 251. In addition to the results including previously unknown data, we provide exh...
متن کاملCOMPUTATION OF JACOBSTHAL ’ S FUNCTION h ( n ) FOR
Let j(n) denote the smallest positive integer m such that every sequence of m consecutive integers contains an integer prime to n. Let Pn be the product of the first n primes and define h(n) = j(Pn). Presently, h(n) is only known for n ≤ 24. In this paper, we describe an algorithm that enabled the calculation of h(n) for n < 50. 0.
متن کاملTernary Modified Collatz Sequences And Jacobsthal Numbers
We show how to apply the Collatz function and the modified Collatz function to the ternary representation of a positive integer, and we present the ternary modified Collatz sequence starting with a multiple of 3N for an arbitrary large integer N . Each ternary string in the sequence is shown to have a repeating string, and the number of occurrences of each digit in each repeating string is iden...
متن کاملOn Jacobsthal Binary Sequences
S. Magliveras and W. Wei∗, Florida Atlantic University Let Σ = {0, 1} be the binary alphabet, and A = {0, 01, 11} the set of three strings 0, 01, 11 over Σ. Let A∗ denote the Kleene closure of A, and Z the set of positive integers. A sequence in A∗ is called a Jacobsthal binary sequence. The number of Jacobsthal binary sequences of length n ∈ Z is the n Jacobsthal number. Let k ∈ Z, 1 ≤ k ≤ n. ...
متن کاملOn Some Identities of k-Jacobsthal-Lucas Numbers
In this paper we present the sequence of the k-Jacobsthal-Lucas numbers that generalizes the Jacobsthal-Lucas sequence introduced by Horadam in 1988. For this new sequence we establish an explicit formula for the term of order n, the well-known Binet’s formula, Catalan’s and d’Ocagne’s Identities and a generating function. Mathematics Subject Classification 2010: 11B37, 11B83
متن کامل